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IDENTITIES WHICH IMPLY THAT A RING IS BOOLEAN

THEODOROS S. BOLIS AND ANDRZEJ SCHINZEL

The following theorem is proved: In a unitary ring of characteristic 2 the identity
=™ = x implies that the ring is Boolean if and only if i — 1 is not divisible by 2F —1
for any prime p.
Key words and phrases: Boolean ring, polynomial identity, finite field, prime number,
asymptotic density, £-ring

For some time problems of the sort “Show that in a unitary ring the identity z® = z,
or the identity 12 = z implies that 2% = & appeared in the literature (cf. Nistisescu et
al. [3], Problem A19, p. 88, Nistisescu ef al. [4], Problem 64, Capitolul XXI, p. 126).
On the other hand, the identity 2! =  does not imply that 22 = z as the example of the
Galois field of four elements IF4 readily shows.

This naturally gives rise to the question: In a unitary ring, for which n does the identity
%" = z imply that the ring is Boolean? More generally, which polynomial identities
imply that a ring is Boolean?

The following results answer these questions, the second one for rings of characteristic
2, the first one completely.

Theorem 1. In a unitary ring R of characteristic 2 the polynomial identity f(z) = 0
implies that the ring is Boolean if and only if > + z is the greatest common divisor of
some polynomials f(g;(z)), where g; € Fa[z] (1 <i<k).

Theorem 2. In a unitary ring R of characteristic 2 the identity z* = z implies that
the ring is Boolean if and only if n — 1 is not divisible by 2P — 1 for any prime p.

Theorem 2 has already been proved by Hansen, Luh and Ye [1], as pointed out by an
anonymous referee. Our proof, based on Theorem 1, is different.

Corollary 1. In a unitary ring R the identity x®" = x implies that the ring is Boolean
if and only if 2n — 1 is not divisible by 2P — 1 for any prime p.

Corollary 2. The number N (x) of integers n < z satisfying the conditions of Corol-
lary 1 is
logx
Coz + O (el's—zsz———l) ,
where

C: =] (1 - ﬁ) ~ 0.54830083128209840767764049152267,
pEP
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and P denotes the set of (positive) primes.

Proof of Theorem 1. Necessity. Let us order all elements of Fa[z] in a sequence
g1 = %, ga,...and put

d = GCD(f(g1),---, fgr)) (k=1,2,...).
Since dg1|dx and d; has only finitely many divisors, there exists an integer n such that
dulf(9(z)) forall g€ Fala]. M
Since f(g(0)) = f(g(1)) = 0 forall g € FFa[z], we have
72 + z|d,.
If now z2 + z # d,,, it follows that
2?+2#0 mod dy. 2

Take for R the residue ring of IF5[z] mod d,,. By (1) we have f(a) = 0 forevery a € R,
while by (2) z2 +z # 0in R.
Sufficiency. By the Euclidean property of the g.c.d., there exist u; € IFz[z] such that

4= Zui(fﬂ)f(gi(x))v

hence f(z) = 0 for every z in R implies 22 + z = 0.
Proof of Theorem 2. Necessity. If 2P — 1|n — 1 we have for every g € Fa[z]

9% +glg” +g.

Since, by the property of Fa-,
hlg® +g

for every irreducible polynomial h € IF5[z] of degree p, it follows that
hlg" +g

and, by Theorem 1, n has not the required property.
Sufficiency. Let

k
24z =2(l+ )™ Hfi(x)
i=1
be the factorization of the polynomial z™ + z into irreducible factors over IFz, and let
d; = degf; > 2 for 1 < i < k (k may be zero). Let p; be a prime factor of d;. Since the
multiplicative group of o, is cyclic, there exists a polynomial g; € Fos, [z] such that

9: #0 mod f; 3
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and
gi =1 mod f; = e=0 mod d; 4)

Consider now the greatest common divisor d of the polynomials
" +z,(z+1)"+z+ 1,07 +01,.-.,97 + 9%-
Clearly z2 + z|d. On the other hand
(z+1)? fz+1)"+z+1
and, since 277 — 1|n — 1, by (3) and (4) we obtain
fi £97 + gi-
Hence d = 2 + z and, by Theorem 1, n has the required property.

Remark 1. Theorems 1 and 2 carry over to {-rings (for definition see [2], p.144). The
number 2 has to be replaced by £ and the polynomial z2 + z by z¢ — z.

Proof of Corollary 1. Since —z = (—z)%* = 22 = ¢, the ring has characteristic 2
and the assertion follows at once from Theorem 2.

Proof of Corollary 2. Let p; be the i-th prime and define & by the inequality

log2zx
Pr S T < Ph. 5)
0g2
For n < = we have
M—1<2x~1< 2P+ _q (6)

and hence 2p; — 1 f2n — 1 for i > k. Moreover GCD(2P: — 1,29 — 1) =1, fori# 7.
Since for D odd, the number of n < z satisfying Dij2n—11s [%_—-IQQJ , we have

g e =D-D2| ol o
e dl;;m”(d) [ [Lpa(2" = 1) J s Hrie s

)

where 1 is the Mobius function. Now,

din i=k+1
and by (6)
& 1 -1 20 1
1< i:I;:L (1 i 1) = exp (_z—;llog (1 T 1))
o)
< exp Z Qpil_lSexpﬁj—_‘?SeXPQEQ_QZI-FO(é)' ©

i=k+1
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On the other hand, by (5) and the strong form of the prime number theorem, we get that
for every € > 0 and z > zo(e)

L& Dk log2z flog2
~ logpr —1 — € ~ loglog2x — loglog2 — 1 — ¢

and hence for z > zo(—loglog2)

log2z logz
i —_— ] = —_— . 10
= &5 (loglog2m — 1) < (EXP (loglog:c - 1)) 10)
Now the corollary follows from (7)-(10).

Remark 2. In the case of £-rings the constant Cs is replaced by

i-5 1 -1
U= = 1] (1_5p—1>'
pEP

It is easy to obtain numerical results about these constants, e.g. C3 ~ 0, 842974678, C5 ~
0,951602563, C7; ~ 0,976555991, Cy; = 0,990971747, ..., C3r = 0,999249768, etc.
We thank a second anonymous referee for a question which led to the obtaining the
asymptotic term of Corollary 2.

Examples. Some non trivial examples of polynomial identities which satisfy the con-
ditions of Theorem 1 are

1) flz) =z+2%+2°+22% 4218 + 5%
=z(l+2)(1+z+z°)(1+28+2°) =0
(use g1 (z) = z and go(z) = z°),

and

2) f(.’l:) =$+$2+$3+I5+I6+$10+$13+$14+$17+$21+$22
L2y %5 1 g%
=z(1+z)1+z+23+2t +2° + 2% +2%)x
x(1+z?+®+at4+2" +28)(l+z+22+2t+28+27 +28) =0

(again use g1 (z) = z and go(z) = z°).

The fact that GCD(f(x), f(z%)) = z? + z is easily verified by using a Computer
Algebra System (CAS).
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